
Large Language Model Architectures and Training Techniques: A
Literature Review

KATHLEEN KELLY, Colorado School of Mines, USA

Large language models (LLMs) represent the forefront of artificial intelli-
gence in natural language processing. To effectively contribute to this area of
research, it is important to understand the underlying fundamentals and ar-
chitectures of LLMs. This literature review aims to present a history of LLMs,
some fundamental concepts of the LLM architecture, and then compare and
contrast several well-known models as well as more recent advances in the
field. Reviewing many architectures together, pros and cons of the varying
design decisions will be shown with the goal of increasing understanding of
the field to help further research.

Additional KeyWords and Phrases: large languagemodel,neural network,machine
learning,GPT,BERT,BART,Claude,Llama,RNN,encoder,decoder,feed-forward,
transfer learning,attention,pre-training,fine-tuning,layer,Gemini

ACM Reference Format:

Kathleen Kelly. 2025. Large Language Model Architectures and Training
Techniques: A Literature Review. 1, 1 (June 2025), 16 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Large language models represent the forefront of artificial intelli-
gence in natural language processing. To effectively contribute to
this area of research, it is important to understand the underlying
fundamentals and architectures of LLMs. Models have nuances in
their designs and training methodologies, challenges in their devel-
opment life cycles and deployments, and strengths and weaknesses
in their model decisions.

Natural language processing and neural networks became especially
popular in the 1990s, leading to deep learning and then the novel
Transformer architecture from which most LLMs are based today.
Understanding the layers of this architecture is a crucial first step
in understanding the most recent developments in LLMs, including
how they are trained, fine-tuned, deployed, and used.

This literature review begins with some previous work and funda-
mentals of LLMs, describes the most common steps in the develop-
ment life cycle, then focuses on reviewing the architectures of 14
large language models, comparing their design decisions. The rest
of the paper is organized as follows: 2) History and Fundamentals,

Author’s address: Kathleen Kelly, kathleenmariekelly@mines.edu, Colorado School of
Mines, Golden, CO, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2025 Association for Computing Machinery.
XXXX-XXXX/2025/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

3) Development Life Cycle, 4) Architectures, 5) Deployment, 6) Use
Cases and Challenges, and 7) Discussion and Future Work.

2 HISTORY AND FUNDAMENTALS

2.1 History of LLMs
Large language models (LLMs) are based on artificial neural net-
works and have grown in use and improvement for a hundred years.
LLMs can be traced back to the 1800s when languages and semantics
were studied by Michel Breal, a French philologist [26]. Languages
as systems were studied in the early 1900s at the University of
Geneva, leading to the publication of Language as a Science in 1916.
In 1959, Arthur Samuel at IBM created a computer game of check-
ers that was described as "machine learning". The first artificial
neural network was called the Mark 1 Perceptron in 1958 [26] and
laid the groundwork for standardizing software across different
computers.

The first natural language programming (NLP) is credited by Joseph
Weizenbaum in 1966 at MIT, a program called ELIZA. It was able
to take input and respond with a programmed answer based on
pre-defined rules [2]. Due to small amounts of data storage and
very slow processing speeds, development of language models did
not grow in the 1970s, but by the 1980s IBM developed a first small
language model that could predict the next word in a sentence using
statistics. This statistical work along with increased computational
power, improved machine algorithms, and the large amounts of data
available on the internet led to a boom in NLP in the 1990s.

The Recurrent Neural Network (RNN) was introduced in 1986 [70],
a novel approach to neural networks that could handle input and
output of varying sizes because of a recursive processing unit and
hidden state that remembers the past. The basic RNN could easily be-
come overloaded due to trying to remember too much information.
A variant of RNN, Long Short-Term Memory (LSTM) was intro-
duced in 1997, leading to deep learning where machine learning
was combined with neural networks and many more layers. LSTM
was able to remember more information with its input, output, and
forget gates along with a sigmoid function. Deep learning became
widespread in the 2010s, used in everyday households with Apple’s
Siri. In 2010, Stanford introduced The CoreNLP suite, and in 2011,
Google introduced Google Brain, both of which helped researchers
solve much more complex machine learning problems.

In 2017 the Transformer architecture was introduced [48], the most
common architecture used in generative AI today. Google researchers
released BERT in 2019, a bidirectional encoder representation from
the Transformer architecture [18]. Then in 2022, OpenAI released
ChatGPT that brought generative AI into a new dimension, allowing
for entire conversations as well as generation of resumes, speeches,

, Vol. 1, No. 1, Article . Publication date: June 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Kathleen Kelly

Table 1. Literature Review Papers

Author Year Title

Cho et al. [19] 2014 Learning Phrase Representations using RNN Encoder-Decoder...
Vaswani et al. [67] 2017 Attention Is All You Need
Devlin et al. [23] 2019 BERT: Pre-training of Deep Bidirectional Transformers...
Liu et al. [44] 2019 RoBERTa: A Robustly Optimized BERT Pretraining Approach
Lewis et al. [42] 2019 BART: Denoising Sequence-to-Sequence Pre-training...
Touvron et al. [66] 2023 LLaMA: Open and Efficient Foundation Language Models
Hal Koss [39] 2023 What is Claude AI...
Fayyazi et al. [57] 2024 Advancing TTP Analysis...
Zhang et al. [73] 2024 TinyLlama: An Open-Source Small Language Model
Reid et al. [56] 2024 Gemini 1.5: Unlocking multimodal understanding...
Pan et al. [53] 2024 Unifying Large Language Models and Knowledge Graphs: A Roadmap
Liu et al. [43] 2024 From LLM to Conversational Agent...
Zhan et al. [72] 2024 AnyGPT: Unified Multimodal LLM...
Cong et al. [21] 2024 AttentionLego: An Open-Source Building Block...
Park et al. [55] 2024 Any-Precision LLM: Low-Cost Deployment...
Xuchen Suo [65] 2024 Signed-Prompt: A New Approach...

images, and more. See Figure 1 for a brief outline of the history of
LLMs [2].

Fig. 1. History of Large Language Models from [2]

2.2 Fundamentals of LLMs
At the most basic level, a machine learning model is a computer
program that can recognize patterns in input data, then make pre-
dictions from those patterns to generate output data [11]. These
models use machine learning algorithms to perform the prediction
tasks. The most common machine learning algorithms are super-
vised learning, unsupervised learning, and reinforcement learning.
With supervised learning, the input data is labeled so the algorithm
can learn from the labels, where in unsupervised learning, there
are no labels so the algorithm must learn from patterns in the data.
Some algorithms use semi-supervised learning, a combination of
both supervised and unsupervised learning. Reinforcement learning
assigns positive and negative values to the algorithm results, trying
to encourage certain results while discouraging others, a trial-and-
error learning process. In all these cases, the algorithms are trained
with input data by the machine learning engineers.

Training an algorithm involves first setting hyperparameters, for
example the number of clusters to use in a pattern-matching clus-
tering algorithm, or the number of branches to use in a decision
tree algorithm. These parameters guide the algorithm and lead to

output parameters, such as weights and biases. LLMs today are
training with billions or even trillions of parameters allowing the
models to learn natural language processing as well as context,
semantics, and nuances [20]. Training on a few hyperparameters
is relatively straightforward, while training LLMs with billions of
parameters presents challenges in computational resources and cost
[68].

Two main types of machine learning models are those used for re-
gression and those used for classification or prediction. The under-
lying algorithms used are regression algorithms and classification
algorithms [61]. In a regression algorithm, a prediction is made
based on past input and output using metrics like Mean Absolute
Error (MAE), Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE). In this case, the target variable is continuous. Using
these metrics, there are different types of regression models that are
often used, including linear regression, ridge regression, and lasso
regression.

Classification algorithms are used to predict a "discrete outcome"
based on classes or categories [61]. Classifications can be binary
or multi-class depending on the possible outcomes. Classification
algorithms are measured for their accuracy, precision, and recall.
Common classification models include logistic regression and K-
nearest neighbors. Tree-based models are also commonly used for
both classification and regression problems. The trees can be de-
cision trees, breaking a problem down into branches of decisions,
and random forests that are decision trees with less overfitting. The
models described are supervised machine learning models, while
there are also popular unsupervised clustering algorithms. K-Means
Clustering is a common model that tries to group similar unlabeled
objects together into K clusters.

The training of a LLM is the process of teaching the model to make
decisions or predictions. To train a model, there must be data, algo-
rithms, adjustable parameters for fitting the data, a loss function to
measure the difference between the model predictions and actuality,
and optimizations [10]. By training a model, it is able to better gen-
eralize its findings on new data, it is better able to recognize patterns
in data, and it will be better able to be automated. To properly train a

, Vol. 1, No. 1, Article . Publication date: June 2025.

Large Language Model Architectures and Training Techniques: A Literature Review • 3

model, there must be well-prepared data, the appropriate algorithm
for classification, regression, or clustering, evaluation, parameter
tuning, and optimization, all in a very delicate balance.

There are challenges associated with LLMs, both with the models
and the data sets. To train a LLM uses significant computational
power and very advanced hardware that is hard to obtain and ex-
pensive, as well as adding an "environmental toll" with the massive
resources needed [59]. During training, it is common that a model
can suffer from overfitting or underfitting [49]. Overfitting is when
a model is too complex and is able to memorize the training data
instead of actually learning data patterns. This model will appear
to be very precise with the training data, but will perform poorly
with new data. Similarly, underfitting is when a model is too simple
to understand data patterns and performs poorly. There are ethical
considerations around the training data, whereby if the model is
trained on biased data, it will output non-diverse responses [59].
Similarly, there are data privacy concerns with the data the model
is trained on [59]. It is crucial that the creators of LLMs are aware
of the challenges and address them with transparency and responsi-
bility.

3 DEVELOPMENT LIFE CYCLE
LLMs are built from several components that all work together to
understand the human language [64]. These key components can
be seen in Figure 2.

Fig. 2. LLM Building Blocks from [64]

3.1 Data collection and preprocessing
Training large language models involves data collection and prepro-
cessing, a series of steps for cleaning and tokenizing the data. There
is also model configuration of the hyperparameters.

Data is collected from massive datasets, web pages, books, and more
to provide the model with a large range of concepts and languages,
also known as a corpus [47]. The corpus is then cleaned to remove

invalid or incorrect characters and duplicates, as well as removing
personally identifiable information. The data preparation step is
crucial so the model is trained on the most accurate and complete
data, leading to better output results [9]. However, as data is cleaned,
there may be missing values or outliers in the values that need to
be corrected or removed.

Once the data has been cleaned, it is transformed into a format the
algorithm can understand, usually some type of data normalization.
Often times this format is feature scaling or feature encoding. In
these processes, values that are on different scales or in varying
categories need to be normalized into one universal scale for the
algorithm to be able to comprehend.

Data tokenization involves splitting text into small individual tokens.
The value of a token is mapped to some part of the plaintext data,
and all the token mappings are stored in a database. There are many
algorithms for tokenizing data, and the challenge is finding the best
location for the tokenization split to provide meaning and context
to each token. Word level tokenization splits a sentence into each
word, as opposed to character level tokenization that splits each
sentence into every character in every word. Another common
algorithm is Byte Pair Encoding (BPE) which merges commonly
occurring characters by splitting the word into sub-words, such
as the beginning and end of the word [33]. Tokenization methods
choose varying token sizes, where smaller tokens use less memory
and are more flexible but are not able to understand context. Larger
tokens increase efficiency and allow for understanding of context,
but are more memory-intensive [32].

The preprocessing pipeline can be seen in Figure 3.

Fig. 3. Data Preprocessing Pipeline from [47]

3.2 Data embedding
Data embedding is the process of converting words into vectors of
numbers. The length of the vector of numbers is variable and can
be tuned as a hyperparameter of the model. The columns of the
vector can represent features of the words, such as size, color, etc.
One issue with embeddings is that multiple meanings of a word will
be represented as the same embedding, but the attention layer is
helpful for these cases [38].

Input embeddings convert words into vectors of numbers to be
used by the model. The simplest form of embedding is the one-hot
encoding method, where every word in the input data is represented
as a vector of all zeros and a single one at the position of that word
in the vocabulary. Depending on the vocabulary size N, every word
would be represented as a vector of N-1 zeros and a single one. This
method is simple but does not retain context of words, resulting in

, Vol. 1, No. 1, Article . Publication date: June 2025.

4 • Kathleen Kelly

words with multiple meanings to have the same vector embedding
[38].

Term frequency-inverse document frequency (TF-IDF) is an embed-
ding strategy where words are assigned a weight based on a word’s
frequency in a document and its inverse document frequency. A TF-
IDF score is high when a word appears frequently in one document
but rarely in an entire corpus of documents, showing its importance
in one document yet rarity overall. TF-IDF helps capture context,
but is ineffective in capturing the semantics of words.

For semantic capturing, one popular technique is Word2Vec [38].
This technique uses a neural network to be able to predict the
surrounding words of an input word, learning word associations.
Another word embedding technique is GloVe, which uses a "co-
occurrence matrix", keeping track of how often two words appear
together, thus learning word associations. Both these techniques,
however, are unable to encode words that are not in the vocabulary,
and both techniques struggle with sentence context [37]. A sentence
embedding technique is embedding from language models (ELMo)
[38]. ELMo is able to learn the meaning of words and their context,
assigning the same word different embeddings depending on the
sentence in which it appears. ElMo uses a bi-directional LSTM
network to produce its vector representations, achieving "state of the
art results" but also being computationally expensive [7].

In one novel approach named Landmark Embedding, Kun et al. [45]
used a "chunking-free embedding method" where long sentences
could be kept intact instead of tokenized. Landmark tokens were
used at the end of each sentence to keep together semantics of that
sentence, while also holding together the related sentences. The
landmark tokens also helped with retrieval of information, being
able to label the exact boundaries of information.

Regardless of the embedding algorithm chosen, the tokenized input
data into a LLM is converted into numerical vectors that are then
stored in a vector database for quick responses. These vectors encode
the tokens and their relationships so the model can understand
context. See Figure 4.

3.3 Data normalization
In the data normalization step, the data is transformed so that its
mean is close to zero and its standard deviation is close to one,
also known as standardization of the data. Common normalization
techniques include batch normalization and layer normalization [6].
Batch normalization uses batch statistics to process data in batches,
but for small batch sizes, the batch mean and standard deviation
values will not be meaningful [17]. Batch normalization works well
for mini-batch training and can help with the problem of overfitting,
but can also cause slowness in training [29]. Layer normalization
calculates normalization for each layer per data point instead of per
batch. This normalization technique can be used with any batch size
and is simpler to implement, but may not outperform batch normal-
ization for large batch sizes [29]. In batch normalization, there is a
dependency on batch size, but not so for layer normalization. Batch
normalization is able to normalize each feature across each small

Fig. 4. Flow of Data in LLM from [15]

batch, while layer normalization works on the inputs in the batch
"independently across all features" [17].

3.4 Attention
The attention layer of a LLM is used to discover relationships be-
tween tokens and find "long-range dependencies" [64], deciding
what information in the input is the most important and help with
ambiguity of words. This layer is usually highly parallelized for
efficiency. This is a crucial layer of the LLM as it looks at the tokens
in relation to each other to discover context, dependencies, and re-
lationships. There are different types of attention strategies, such as
self-attention, cross attention, sparse attention, and flash attention
[50]. Specifically, the self-attention mechanism allows the model to
focus on different parts of the input at the same time instead of step-
by-step [28]. By using weighted sums of the values it receives from
the previous layer, this layer is able to pay attention to certain parts
of the input using query, key, and value representations. Key, query,
and value matrices are matrices of values that are populated during
training. As embedding vectors come into the attention layer, the
values within the vectors are updated as new weights are calculated
based on context, then the vectors can be sent back through the
model.

Similarity between words or tokens are measured using similarity
scores. A dot product calculation is a way to measure similarity,
multiplying embedding vectors of feature data. Tokens sharing simi-
lar features will yield higher values in corresponding vector indices,
resulting in a higher dot product score and causing them to cluster
together in the model. Cosine similarity is another way to measure
similarity, measuring the angle between two embeddings with a
result of a number between 1 and -1. Additionally, the scaled dot
product is a widely used technique for measuring similarity that
does the dot product divided by the length of the embedding vector,
creating manageable measurements for very large vectors.

, Vol. 1, No. 1, Article . Publication date: June 2025.

Large Language Model Architectures and Training Techniques: A Literature Review • 5

As mentioned, the matrices in a similarity computation are key and
query matrices which are used together to make a linear transforma-
tion matrix. This linear transformation is used in the dot product of
the input tokens in question, looking for the highest similarity score,
updating the embedding to one that is "better" [4]. A value matrix is
used to find the next best word in the sentence. The values matrix
is multiplied by the resulting similarity scores to then choose the
next word based on context. The similarity embedding knows the
features of words while the word embedding knows the sentence
context. A Softmax function is used in the attention layer to convert
the weights to normalized positive values, passing the values on to
the next step in the layer. See Figure 5 for the steps in the attention
layer.

Fig. 5. Attention Layer from [58]

In multi-head attention layers, the attention module is repeated
many times in parallel to give the Transformer the ability to en-
code relationships and nuances for each word. In this technique, an
embedding matrix is transformed using linear transformations to
create modified versions of the matrix, then each matrix is given a
score. The higher scoring embedding will be the embedding that
is chosen by the model. Multi-head attention uses many key and
query matrices to form multiple attention embeddings, then multi-
ple value matrices to transform similarity embeddings to context
embeddings. These results are concatenated into a high-dimensional
embedding, then transformed into a lower-dimensional embedding
[4]. By splitting the input embeddings across multiple attention
heads, the model is able to learn different aspects of the meanings
of words.

3.5 Feed-Forward
After the attention layer, the attention vectors go through a feed-
forward layer one at a time so they can be parallelized [54]. Feed-
forward layers are unidirectional, only looking forward, not back
in time. The model is able to capture features and patterns in this
layer.

3.6 Pre-training
Pre-training is a step that involves sending the prepared data as input
into the model repeatedly, teaching the model to choose more wisely
as its loss function improves. This step is unsupervised, whereby the
model is given unlabelled data. A loss function, or error function,
is an algorithm that quantifies the error between what the model
outputs and what is expected. This loss should be as small as possi-
ble for the model to output the most correctly. One common loss
function is the mean square error function (MSE), where for every
data point input into the model and every output value, a distance
is calculated between them. The error is this distance squared. The
average of all the distance squared values is the MSE, and linear
regression is the process of trying to minimize this MSE [5]. A loss
function attempts to maximize a likelihood, namely that the model
will choose the correct next token of all the possibilities. Input text
goes through the layers of the model, then output text is the prob-
ability distribution of all the possible next tokens at that location
in the sequence. The logarithm of that probability is calculated and
used in a sum for the loss function [24]. See Figure 6.

Fig. 6. Pre-training in GPT from [24]

3.7 Fine-tuning
Fine-tuning is a step that occurs further downstream in the model
on labelled supervised data. This layer also uses a loss function,
but the loss being computed is between the expected label and the
actual label from the model. This step trains the model on a specific
task so it can adapt what it learned in pre-training to that specific
task [36]. The model is able to retain what it already learned, but
by adjusting parameters, can specialize in the target domain. Fine-
tuning is accomplished in variousways, such as supervised, few-shot
learning, transfer learning, and domain-specific fine-tuning. In each

, Vol. 1, No. 1, Article . Publication date: June 2025.

6 • Kathleen Kelly

case, the model is further trained on data, examples, or domain-
specific target data. The quality of the fine-tuning data is critical, as
well as the tuning of hyperparameters [25].

3.8 Transfer learning
Because of the fine-tuning step, LLMs are able to perform transfer
learning, being able to transfer knowledge from one source to a dif-
ferent target. Performing training on models is time consuming and
expensive, but with fine-tuning and transfer learning, models can
reuse training data across many different contexts [13]. Sentiment
Analysis is a common application of transfer learning, the process of
a model learning the sentiment or emotion of the text. Named Entity
Recognition (NER) is another common application of transfer learn-
ing, where the model is able to categorize named entities due to the
model parameters being adapted to the specific categorization task
[13]. Other transfer learning applications include text classification,
question answering systems, and language translation.

As with other layers of the LLM, there are concerns of bias in the
pre-training data which would then propagate through the fine-
tuning and into the transfer learning layers. Similarly, privacy and
security risks in the data would also propagate through the model.
Challenges in transfer learning include differences in the domains
and the data between them, leading to additional steps to adapt the
data between domains. There also needs to be plenty of data to train
against as well as large computational resources.

4 ARCHITECTURES
The architecture of LLMs involves multiple neural network layers,
including the embedding layers, the feed-forward layers, and the
recurrent layers [69] that all work together. The embedding layer
generates the input data embeddings so the model can hold semantic
and syntactic meanings. The feed-forward layer does transformation
on the embeddings to help the model understand "user intent in
inputs". The recurrent layer works on interpretation of the input
data, creating data associations.

4.1 History
LLMs started as predetermined rules and heuristics. For example,
Eliza, developed by Joseph Weizenbaum at MIT, would take the
user’s statement and rephrase it into a question, making it seem
conversational. Next came more statistical models that tried to pre-
dict the most likely output words given input. Neural networks
followed, using earlier models and artificial neurons that would
activate based on the output of other nodes [46].

A Recurrent Neural Network (RNN) is a type of neural network that
passes output from the previous step as input into the current step,
as opposed to the inputs and outputs being independent of each
other. The RNN contains a Hidden Layer that keeps a "hidden" or
"memory" state, remembering information about previous inputs.
In an RNN, the weight across the network stays the same, different
from deep neural networks where the weights change. At each unit
of the RNN, there is a current state that is calculated based on the
input state and the previous state. To train a RNN, the current state
is calculated which then becomes the input to the next step, going

as many steps as is necessary for the problem, leading to an output.
This output is compared to the actual target output and an error
is generated, then back-propagated to update the weights in the
network and train again [1].

Variations of the RNN include the Bidirectional Neural Network
(BiNN) and the Long Short-Term Memory (LSTM). LSTMs improve
on the RNN by being better able to handle long-term dependencies.
RNNs and LSTMs are still in use but tend to be used in conjunction
with the Transformer architecture. A Gated Recurrent Unit (GRU) is
a variation on the LSTM that tries to solve the "vanishing gradient
problem" [40] and was introduced by Kyunghyun Cho et al. in 2014
[19]. GRU uses update and reset gates that manage what information
is passed to the output. The update gate is used to determine how
much of past information should be passed forward in the model,
while the reset gate determines how much of past information
should be dropped.

In 2016, the Transformer architecture was founded, moving from
sequential to self-attention mechanisms. This architecture allowed
for the model to analyze all the words in a sequence at the same
time instead of one at a time. This is still the primary architecture
used today [22]. The Transformer has three key components: an
encoder, a decoder, and a self-attention mechanism. The novel self-
attention mechanism is what allows the model to keep long-range
dependencies. Most of the LLMs in use today are based on the Trans-
former architecture but with small modifications to the encoder or
decoder.

In a revolutionary paper, Vaswani et al. [67] proposed the Trans-
former architecture that is based on the attention mechanism and
does away with the recurrence model. As seen in Figure 7, there
is an encoder with some number of identical layers, each made up
of a multi-head self-attention mechanism and a feed-forward net-
work. There is also a decoder with some number of identical layers,
each made up of a masked multi-head attention layer, a multi-head
attention layer, and a feed-forward network. Attention layers are
used in three different ways in the Transformer: 1) self-attention
layers in the encoder that use keys, values, and queries from the
previous encoder layer, 2) self-attention layers in the decoder that
work similarly, and 3) "encoder-decoder attention" layers that use
keys and values from the encoder and queries from the decoder.
According to Vaswani et al., the Transformer can be trained much
faster than RNNs.

4.2 Transformers
4.2.1 GPT. From the Transformer architecture was born all the
LLMs of the present day. Generative Pre-trained Transformer (GPT)
is a LLM that is based on the Transformer architecture, founded by
OpenAI in 2018. It has had iterations of GPT-1, GPT-2, GPT-3, and
GPT-4, each an improvement of its predecessor. GPT-3 improved
GPT-2 with its number of training parameters, going from about 1.5
billion parameters to 175 billion, as well as being able to generate
computer programs. GPT-4 is also able to parse image inputs [60].
GPT differs from other Transformer models in that it undergoes
both pre-training and fine-tuning before a final task-specific fine-
tuning step. It also uses a multi-head self-attention mechanism so

, Vol. 1, No. 1, Article . Publication date: June 2025.

Large Language Model Architectures and Training Techniques: A Literature Review • 7

Fig. 7. Transformer architecture from [67]

it can focus on different parts of the input simultaneously [27]. To
overcome a Transformer limitation of the order of input elements,
GPT uses positional encodings. GPT also has a "layer-wise structure",
a stack of layers that each has its own parameters, as shown in Figure
8.

4.2.2 BERT. BERT, Bidirectional Encoder Representations from
Transformers, was introduced in a paper in 2019 by Devlin et. al
[23]. This novel approach uses bidirectional training of text by
looking at the full input from both the left and the right directions.
BERT uses a "masked language model" (MLM) to mask some of the
input tokens, then predict the masked token based on the context.
BERT is made up of two major steps: pre-training and fine-tuning.
Pre-training involves unlabeled data where fine-tuning uses the pre-
trained parameters and the output labeled data. Both these steps
use a unified architecture, a "multi-layer bidirectional Transformer
encoder". BERT is an encoder-only model, predicting tokens based
on the input data and the context from both sides of that data, as
shown in Figure 9.

4.2.3 RoBERTa. Robustly Optimized BERT Approach (RoBERTa)
is an advanced version of BERT where the model was trained for a

Fig. 8. GPT architecture from [41]

Fig. 9. BERT architecture from [23]

longer period of time and on longer sequences, the next sentence
prediction objective was removed, and the masking pattern applied
was changed [44]. Liu et al. [44] described the masking pattern
used as "dynamic" as compared with the static pattern used by
BERT, generating the masking pattern for every input sequence.
The authors also described the Next Sentence Prediction (NSP) loss
used in BERT where the model predicts if input segments are from
the same or different documents. Liu et al. proposed that NSP loss
was not as crucial as claimed, doing experiments on segments with
and without NSP loss. Results showed that the best performance
occurs with input sequences from a single document and without
NSP loss. The authors concluded that RoBERTa outperforms BERT
with its use of longer training time, bigger training batches over
larger training sets, removing the NSP loss, and using dynamic
masking.

4.2.4 BART. In 2019, Lewis et al. [42] introduced BART, a LLM that
combines an encoder and a decoder into the architecture, combining
BERT and an auto-regressive Transformer model. BART uses a

, Vol. 1, No. 1, Article . Publication date: June 2025.

8 • Kathleen Kelly

noising function to randomly shuffle the original text order as well
as masking arbitrary lengths of the input text. It uses a bidirectional
encoder similar to BERT, then a left-to-right decoder similar to
GPT. BART is trained by corrupting documents, then reconstructing
them and examining the difference to produce the loss function.
The text corruption could be token masking or deletion, sentence
permutation or rotation, or text infilling. Results showed that token
masking was the most successful form of pre-training, as well as
left-to-right pre-training.

4.2.5 Llama. In 2023, Meta AI came out with a novel LLM called
Llama, with a couple iterations of Llama-1 and Llama-2 [66]. These
models range in parameter sizes of 7 to 70 billion, train on more
data and longer context length, and use an optimized Transformer
architecture. As shown in Figure 10, Llama uses a Root Mean Square
Layer Normalization (RMSNorm) instead of a traditional normal-
ization layer, making it computationally simpler and more efficient.
Llama also does the normalization step before other major layers
instead of after, adding to training stability. Another architectural
difference in the Llamamodel is the use of a grouped-query attention
method (GQA) instead of a multi-head or multi-query method dur-
ing the attention layer. GQA produces similar results to multi-head
attention but is similar in speed to multi-query attention.

Fig. 10. Llama-2 architecture from [3]

4.2.6 Claude. Claude is a LLM developed by Anthropic in 2023
that is based on the Transformer architecture, but also uses a novel
Constitutional AI to train the model using ethical principles as its
guide [39]. It uses unsupervised learning as well as reinforcement
learning with human feedback (RLHF), then adds in the additional
constitutional AI layer. The constitutional layer is used during the
supervised learning phase as well as during the reinforcement learn-
ing phase, as shown in Figure 11.

4.2.7 Gemini. Gemini, formerly known as Bard, is a LLM developed
by Google. Reid et al. presented this LLM in a paper, calling it

Fig. 11. Claude architecture from [8]

a "multimodal mixture-of-experts model" [56]. With millions of
tokens, Gemini (Generalized Multimodal Intelligence Network [51])
is able to parse input from text, video, images, audio, graphs, and
3D sources, encoding the various inputs into a format the model
can understand agnostically. The decoder is able to decode into
the modality of choice by the user. The multimodal encoder and
decoder allow the model to eliminate a fine-tuning stage. See Figure
12.

Fig. 12. Gemini high level architecture from [12]

4.3 Recent advances
In more recent work, advances are being made in LLM research
to improve performance, dependability, and content. This section
describes new LLM models and techniques of Retrieval Augmented
Generation, TinyLlama, knowledge graphs, RAISE, AnyGPT, and
AttentionLego.

4.3.1 RAG. In a paper by Fayyazi et al. [57], encoder-only and
decoder-only models were used in conjunction with Retrieval Aug-
mented Generation (RAG) to study the accuracy of models in the
cybersecurity field and their analysis of "cyberattack procedure
descriptions". The authors discussed the tendency of LLMs to hallu-
cinate and output incorrect data, so RAG techniques were used to
give the model the most relevant documents as further input from
a vector database. The research involved testing output on encoder-
only LLMs, decoder-only LLMs, and using RAG with decoder-only
LLMs.

For encoder-only LLMs the authors used RoBERTa and SecureBERT,
fine-tuning them with curated cybersecurity data. For decoder-only
analysis, the authors used GPT-3.5-turbo-1106 and a generic prompt:
"You are a cybersecurity expert. Knowing that «procedure», what

, Vol. 1, No. 1, Article . Publication date: June 2025.

Large Language Model Architectures and Training Techniques: A Literature Review • 9

MITRE ATTCK tactics will a cyber adversary achieve with this tech-
nique? Please only respond with the MITRE ATTCK tactics you are
certain about."

When adding RAG, the authors inserted into the prompt three pro-
cedures similar to the procedure under question. The analysis done
involved both "recall" and "precision", how well the model was
able to map the input to the correct output while keeping a low
hallucination rate. Results showed that SecureBERT performed bet-
ter of the encoder-only models, while decoder-only plus RAG out-
performed decoder-only. The authors found that the encoder-only
model performed better for precision, while the decoder-only model
performed better for recall, showing that hallucinations tend to
come from the decoding stage. Fayyazi et al. also found that RAG,
while helpful, can also be a distraction in the model’s output, caus-
ing it to focus too much on the extra content provided. Overall the
authors concluded that the decoder-only LLMs with RAG performed
the best, but noted that encoder-only LLMs required fewer resources.
It was also proposed that LLMs of the future should "improve preci-
sion without compromising recall", allowing for less hallucinations
while correctly interpreting cybersecurity procedures.

4.3.2 TinyLlama. Zhang et al. [73] created an open-source model
called TinyLlama, based on the Llama 2 model but small in size.
This work focused on training a smaller model on a large number
of tokens, specifically 1.1B parameters and 3 trillion tokens on a
Transformer decoder-only model. TinyLlama was pre-trained on
950 billion tokens with a mixture of natural language and code data.
The architecture was similar to Llama 2 while including a grouped-
query attention layer so key and value data could be shared across
multiple heads. There were also speed and attention optimizations
made in the architecture. The authors found that this smaller model
performed as well as competitors, but with the smaller architecture
would be an excellent use for mobile devices or for testing new LLM
ideas.

4.3.3 Knowledge Graphs. In another work, Pan et. al [53] reviewed
the idea of LLMs and Knowledge Graphs (KGs) as a way of adding
more knowledge to the LLM. The authors explained that LLMs tend
to be "black-box models" while KGs are difficult to evolve, so it was
proposed to combine the two ideas into one, a KG-enhanced LLM.
Due to the lack of "factual knowledge", LLMs can struggle with
recalling facts and therefore generate hallucinations instead. The
authors explained that KGs can be created with domain-specific
content to help the LLM be more dependable. The pros and cons of
both LLMs and KGs are shown in Figure 13.

In the paper by Pan et. al [53], the authors described three varia-
tions of combining LLMs and KGs: a KG-enhanced LLM, a LLM-
augmented KG, and a synergized LLM plus KG, as shown in Figure
14. KGs are able to store structured knowledge in the form of triples
that represent the entities and their relations. KGs are often filled
with encyclopedic content, domain-specific content, common sense
content, or multi-modal content. A KG-enhanced LLM could utilize
a KG in the pre-training or the inference stages of a LLM, depending
on the application. The authors also researched involving a KG in
the process of trying to understand the inner workings of the LLM.
LLMs could complement KGs by adding encoding and embedding

Fig. 13. LLMs versus KGs from [53]

functionality to the KG. LLMs could also be used in the various
stages of creating a KG. Lastly, the authors researched a synergized
LLM plus KG approach with LLMs understanding natural language
and KGs being the knowledge base. One approach researched used
a T-encoder to encode the input, then a K-encoder to encode the
KG, then fused the encodings together for a "synergized knowledge
representation". Another approach researched was "synergized rea-
soning", where the model could reason using both LLMs and KGs.
The architecture could include a separate encoder for the LLM and
the KG, then an additional reasoning module. The architecture could
alternatively include the LLM as an "agent for reasoning" on the
KG.

Fig. 14. LLMs with KGs from [53]

The authors concluded with some future direction in the area of uni-
fying LLMs and KGs. KGs could be used to help detect hallucinations
in LLMs. KGs could also help with editing the internal knowledge
inside LLMs. LLMs could be used to add multi-modal support to
KGs. A final note made by the authors was to truly integrate LLMs
and KGs by developing a KG structure that can be directly input into
the LLM. Combining the understanding of natural language with
that of structured knowledge representation could benefit many
diverse applications.

4.3.4 RAISE. Liu et al. [43] introduced an architecture to help with
the integration of LLMs and conversational agents called RAISE,
Reasoning and Acting through Scratchpad and Examples. RAISE
was based on the existing ReACT framework [71] but added a "dual-
component memory system" to help with short-term and long-
term memory abilities for more continuous dialogue. The authors

, Vol. 1, No. 1, Article . Publication date: June 2025.

10 • Kathleen Kelly

performed their analysis in the real estate domain but concluded
that RAISE could be used in any context. Results showed that adding
examples and scratchpads to the existing ReACT framework were
effective, and that fine-tuning was a better approach than prompting.
The architecture of RAISE is shown in Figure 15.

Fig. 15. RAISE architecture from [43]

4.3.5 AnyGPT. Zhan et al. [72] proposed a multi-modal LLM so-
lution called AnyGPT that could generate any modality from any
modality. This idea would allow for input speech, text, image, and
music to each be encoded and decoded in discrete ways, while leav-
ing the existing LLM architecture unmodified. The authors used
training data made up of 108k conversations that included multiple
modalities, conversations that included text, speech, images, andmu-
sic. AnyGPT was not fine-tuned or pre-trained for its experiments,
using a zero-shot model and showing more general results. By using
discrete representations of all the modalities, the authors showed
that adding new modalities would be seamless. Results showed that
AnyGPT worked well in all the cross-modal experiments performed,
and that using discrete representations of all the data was an effec-
tive way to unify all the modalities. The AnyGPT architecture is
shown in Figure 16. The authors described limitations of the work,
including its novelty and therefore a lack of benchmarks in the area.
AnyGPT had a higher loss compared to models that train on a single
modality and could be trained on longer content and more enhanced
tokenizers.

Fig. 16. AnyGPT architecture from [72]

4.3.6 AttentionLego. Cong et al. [21] described a novel self-attention
accelerator called AttentionLego that uses Processing-In-Memory

(PIM) technology to help with the I/O bandwidth demand that LLMs
enforce and helping with efficiency. The authors proposed Atten-
tionLego to be a building block for "spatially expandable LLM pro-
cessors". PIM technology allows for the processing units and the
memory to be located on the same chip, therefore eliminating the
transfer of data between them. AttentionLego is comprised of five
parts: the input process module, the score module, the Softmax
module, the Direct Memory Access (DMA) module, and the top
controller. The architecture of AttentionLego can be seen in Figure
17.

Fig. 17. AttentionLego architecture from [21]

5 DEPLOYMENT
Once a LLM is built, there are deployment strategies to consider to
minimize latency, cost, resources, and privacy concerns. The actual
hardware on which the model runs as well as the parameters of the
model will affect its cost and speed. The model should have enough
capacity to run as well as be scalable for different use cases. Data
must be unbiased and secure [16].

When considering deployment challenges, there are several aspects
of the LLM. Generating a response from the LLM can have a high
latency depending on the requested task. The length of the input
prompt can also affect the amount of work the LLM has to do since
the longer the prompt, the more input tokens have to be created
and sent into the model. Some models keep a key/value cache of
previously generated tokens, but this requires more memory. Two
main challenges to keep in mind are the LLM memory requirement
and choosing the best scheduling strategy for the LLM to respond
optimally [14].

In a typical LLM, memory is needed for the model parameters,
caching, retrieval augmented generation requirements, and input
tokens. To help reduce memory requirements, model compression
can be done with distillation, pruning, or quantization. In quantiza-
tion, the model weights are represented with lower precision values,
such as using one byte instead of four. Attention layers can also
be optimized to reduce the amount of data movement. Scheduling
of requests can also be optimized for the best user experience, for
example by doing batch level scheduling, batching requests and han-
dling them at the same time. Iteration level scheduling is a process of
scheduling tokens one at a time, adjusting batch sizes dynamically
depending on the request [14].

, Vol. 1, No. 1, Article . Publication date: June 2025.

Large Language Model Architectures and Training Techniques: A Literature Review • 11

Memory bandwidth is also a concern since constant data movement
across GPUs will affect performance. Data parallelism can help the
model handle more requests as they are sent in parallel, but the
model must fit on a single GPU. For multiple GPUs, tensor paral-
lelism can be used to split the model such that each GPU computes
part of the result, then all the partial results are synchronized in
a final step. Pipeline parallelism is another splitting approach that
does not require synchronization but instead the GPUs work as a
pipeline, passing output from one GPU to the next GPU as input.
There can be a decrease in throughput, though, since the GPUs have
to work serially [14].

In a novel paper by Park et al. [55], the authors introduce Any-
Precision LLM to reduce the deployment costs of multiple LLMs
of different sizes. The authors proposed a solution of overlaying
varying LLMs into one memory footprint of the largest bit-width
LLM. The authors noted that to achieve this LLM, Any-Precision
quantization needs to be improved and a GPU that can do quan-
tized matrix-vector multiplication needs to be developed. A novel
approach was proposed that the authors called "incremental upscal-
ing", shown in Figure 18.

Fig. 18. Incremental Upscaling from [55]

The authors also proposed a bitplane-based representation of the
model’s quantized weights, as opposed to a more commonly used
bitpacking-based representation, as shown in Figure 19. With this
variant representation, Any-Precision LLMdeployment can be achieved
more efficiently since any runtime request would load only the
specified amount of bits needed. The authors concluded that Any-
Precision LLM would be both memory-efficient and cost-saving in
the deployment of multiple varying-sized LLMs.

Fig. 19. Bitpacking versus bitplane from [55]

Overall, the deployment of a LLM must consider the complexities
of the model, the cost, the performance, and security and privacy
concerns. Before deployment, security assessments should be per-
formed to identify any vulnerabilities in the LLM [62].

6 USE CASES AND CHALLENGES
Artificial neural networks are in use more today than ever before;
research into their architectures is ongoing. In this section, some of
the architectural decisions will be compared and contrasted look-
ing at the pros and cons of various models as well as their use
cases.

In general, LLMs have been hailed for being able to deliver gen-
eral knowledge and perform language processing. LLMs enable the
automation of data generation as well as the ability to develop an
understanding of language context. LLM parameter and pre-training
datasets continue to grow, helping the overall model performance
and accuracy. On the flip side, LLMs are computationally expen-
sive, causing a large carbon footprint and an expense that smaller
companies cannot afford. As the model architectures become more
complicated, so does the understanding, making the model more
of a black box. Because LLMs tend to learn generalized knowledge,
they also lack domain-specific or new and evolving knowledge. The
models can also have hallucinations, producing inaccurate or of-
fensive results. There are ethical and privacy considerations that
need to be considered, too [34]. For models that add a fine-tuning
layer for domain-specific tasks, there is much more data required
for training which can lead to overfitting of the model to the narrow
fine-tuned data.

6.1 RNN
Recurrent neural networks (RNNs) are best suited for sequential
data analysis, for example doing translations of text from one lan-
guage to another or doing time-series prediction. Data in a RNN
from the previous step is passed into the next step, so the network
can remember all the information through time. RNNS, though,
are slow to train, cannot handle long sequences, and have an "ex-
ploding gradient" problem where the slope of the gradient grows
exponentially because the model weights get too large [1]. The
Long Short-Term Memory (LSTM) variation of the RNN is able
to overcome the exploding gradient problem because it works to
"read-write-and-forget", reading the input data and only saving the
most useful information for predicting the output. It is able to keep
memory over longer sequences, but it is still slow to train and is
more complex with additional gates. Both RNNs and LSTM net-
works are sequential and therefore do not make use of the parallel
computation of modern GPUs.

6.2 Transformer
The Transformer architecture is a neural network architecture that
overcomes slow and sequential formats of the RNN. The Trans-
former is faster because it can pass input into its encoder and de-
coder in parallel. It does not have the concept of a time step as it
determines word embeddings and context simultaneously. Different
from the previously mentioned neural network architecture, the
Transformer does not use recurrent layers but instead the attention
layer as its fundamental layer. This layer allows the Transformer
to pay more attention to the input data that is the most meaning-
ful. This layer allows the model to preserve the overall context of
the input, unlike RNNs and LSTM. However, Transformers are also
more expensive and use more memory. They are more complicated,

, Vol. 1, No. 1, Article . Publication date: June 2025.

12 • Kathleen Kelly

making it very difficult to gain insight into how the model produces
its output [52]. Transformers need to be pre-trained on massive
amounts of labeled data to be able to learn effectively.

6.2.1 BERT. BERT uses the Transformer model but with encoders
only, pre-training the model with data, then fine-tuning it for a
specific task. Fine-tuning uses supervised learning where the input
is both a question and a passage with the answer, the output is only
the answer. This fine-tuning step makes BERT a useful model for
handling specific tasks. BERT excels in tasks such as text classifi-
cation because of its bidirectional nature. It also was a forerunner
in transfer learning methods with its fine-tuning step. A weakness
of BERT is how it accomplishes tokenization, splitting words into
sub-tokens which could cause a loss of context. BERT also is very
computationally expensive, especially during the fine-tuning stage
[35]. BERT is used for text categorization, sentiment analysis, ques-
tion and answering, and language modeling.

6.2.2 RoBERTa. RoBERTa is a "robustly optimized" version of BERT,
training with more data and for a longer training duration. This
helpswith contextual understanding and generalization of themodel.
RoBERTa, however, still has the sub-token weakness of BERT, and
is also resource intensive [35]. Like BERT, RoBERTa is used for text
categorization, sentiment analysis, question and answering, and
language modeling.

6.2.3 GPT-3. GPT-3 uses the Transformer architecture, but with a
decoder-only model working in an auto-regressive way such that
only the tokens of the past can be seen at any one time. It prepares
the model with 175 billion parameters, allowing for capabilities in
language translation, question answering, and text generation [35].
It is able to understand context as well as generalize. Given some
input, the model generates output, then calculates the error between
the actual and expected outputs, updating the model’s parameters
and weights with this error difference. GPT-3 has a maximum input
length of 2048 tokens, each one represented as a vector that travels
through 96 layers of Transformer decoders processed sequentially
in smaller chunks. It performs both pre-training and fine-tuning,
allowing it to have knowledge and work well on specific tasks.
GPT-3 also utilizes 0-shot, 1-shot, and few-shot learning where the
input prompt includes zero, one, or more than one example with
the prompt. Weaknesses of GPT-3 are related to its enormous size
which makes it expensive to train and to deploy. GPT-3 also relies
on patterns in the data so can be factually incorrect in its responses.
This powerful model also still needs to consider ethics, privacy, and
harmfulness in its responses. GPT-3 has been used as a chatbot,
for personal recommendations, for text and code generation, for
language translation, for searches, and much more.

6.2.4 BART. BART is a combination of BERT and GPT, a Trans-
former architecture with both an encoder and a decoder. BART was
shown to perform similarly to RoBERTa, but needs more explo-
ration in how it corrupts the input documents during pre-training.
BART has been used for document summarizations and creating
grammatically correct output from noisy input [63].

6.2.5 Llama. The Llama architecture follows a decoder-only Trans-
former model while including a pre-normalization step, an extra

activation function, and a "Rotary Position Embedding (ROPE)" to
give it better performance [30]. The newest Llama-2 model has up
to 70 billion parameters, trains on 40% more data and more con-
text length than Llama-1, and adds a fine-tuning step. Llama is also
cognisant of the carbon footprint, reducing the CO2 by 100 tons.
It is being shown to outperform GPT-3 with less parameters and a
smaller architecture but more training data. Like GPT-3, though, it
is large in size and therefore expensive to run, possibly making it
not as accessible to some users. Llama-2 is used for generating safe
and non-harmful text as well as doing text summarization.

6.2.6 Claude. Claude is an architecture that is based on a Consti-
tutional AI paper and is completely self-supervised with no human
involvement. It is fed the rules of the constitution, then performs
reinforcement learning. It can process up to 200,000 pieces of infor-
mation at a time, making it able to hold more context and hold longer
conversations as a chat agent. Claude 3 is not able to understand
code or generate images, and it also puts limitations on persona
modeling to ensure that it is following the constitution [31]. Like
other models, Claude is used for content generation, classification,
and search.

6.2.7 Gemini. Gemini uses a novel multi-modal encoder and de-
coder as part of its architecture, allowing for varying types of output
nomatter what the input type. This facilitates communication across
the modalities throughout the process. For example, Gemini can
take an image as input and output a textual description of that image.
It is able to process "multiple millions of tokens" [56], allowing it
to respond accurately and precisely. Gemini is used for text pro-
cessing, generation, and translation, but also for image and video
understanding, and multi-modal reasoning.

6.2.8 Most recently. In more recent models reviewed, suggestions
were made by authors that would increase model accuracy, general-
izability, and performance. Zhan et al. [72] described AnyGPT as
being capable of going from any modality input to any modality out-
put, making it more generalizable. However, their performance data
was so novel that there were not other comparable benchmarks to
truly measure against. Cong et al. [21] described an advanced atten-
tion layer, AttentionLego, that would co-locate the processing units
and the memory on the same chip, reducing the data bandwidth and
increasing performance. This Processing-In-Memory technique is
both power and energy saving but needs more quantitative analysis.
Zhang et al. [73] proposed a smaller scale Llama architecture dubbed
TinyLlama, making speed and attention optimizations to the Llama
architecture. This model was found to perform well but would be
better suited for smaller devices such as mobile.

To help improve model accuracy, Pan et al. [53] suggested the in-
termingling of a LLM and knowledge graphs that are easier to
comprehend. With the use of KGs, it would be easier to detect hal-
lucinations and inaccuracies in the model, then easier to update
the internal knowledge. The authors suggested a model that could
directly interpret a KG as part of its training data. Liu et al. [43]
proposed adding examples and scratchpads to the model training
as well as to the fine-tuning stage to increase model accuracy. This
work was specifically done in the real estate domain, but the au-
thors called for its use in other domains, too. Fayyazi et al. [57]

, Vol. 1, No. 1, Article . Publication date: June 2025.

Large Language Model Architectures and Training Techniques: A Literature Review • 13

proposed adding a vector database of relevant information in addi-
tion to training data, known as Retrieval Augmented Generation, to
improve the model’s accuracy. This work was done in the cybersecu-
rity domain, enhancing the model with a database of cybersecurity
procedures.

In a novel paper by Xuchen Suo [65], the issue of prompt injec-
tion attacks in LLMs was reviewed, suggesting a "Signed-Prompt"
method to encrypt the important commands of the input prompt so
it cannot be attacked. This model would include an encoder module
to sign the user instructions as well as LLM modifications to be able
to understand the signed instructions, thus differentiating between
legitimate users and external attackers (see Figure 20). The authors
proposed more research in this defense strategy area of LLMs, en-
hancing existing strategies as well as improving the performance of
"Signed-Prompt".

Fig. 20. Signed-Prompt Example from [65]

7 DISCUSSION AND FUTURE WORK
In most of this literature review, we have looked at papers surround-
ing various LLM architectures from past years as well as recent work.
Each architecture has advantages and disadvantages, and each new
LLM release attempts to address disadvantages while introducing
new benefits in a novel way.

Starting with the recurrent neural network (RNN) with an encoder,
decoder, and hidden layers [19], this architecture contains a sequen-
tial format and the ability to remember or forget information, thus
capturing both long-term and short-term dependencies. This archi-
tecture works well for translation tasks, but its sequential nature
poses limitations as the input lengths grow and require batching
due to memory constraints.

The novel Transformer architecture [67] offers a solution that re-
moves the recurrence of RNNs and adds attention mechanisms. This
architecture is parallelizable and takes less time to train. The con-
stant number of sequential operations make the attention layers
faster than recurrent layers that have variable sequential opera-
tions.

All the models researched in this paper are then based on the Trans-
former, each adding a unique spin to the model. Models select the
components that are best suited for a particular use case, such as
a decoder-only Transformer, an encoder-only Transformer, or a
combination. Models use varying numbers of parameters, train on
varying amounts of data, and train on varying context sizes and
lengths of time. Each of these choices affects the model complexity,
cost, efficiency, and ethical considerations. Some models are open
source and train on publicly available data while others are more of
a black box. The data quality used in pretraining is crucial as it could

introduce biased or harmful output from the model. Due to the black
box nature of LLMs, the output can be difficult to explain. Adding
more visibility into how a model is generating its output could be a
major factor in reducing harmful and biased results.

Related to the data, a common limitation of the researched LLMs is
the difficulty in updating the model with the most current knowl-
edge. When a model needs to be updated with new knowledge, it
requires more pretraining and more fine-tuning. Fayyazi et al. [57]
suggested a Retrieval Augmented Generation (RAG) system where
new knowledge could be retrieved from a database at various stages
of the architecture before the final output response is generated.
Perhaps RAG could be added to both the prompt and the fine-tuning
stages for optimal recall and precision. Pan et at. [53] explored the
idea of enhancing a LLM with knowledge graphs that could hold
domain-specific up-to-date knowledge, allowing the LLM to access
the latest knowledge without retraining. Liu et al. [43] enhanced a
conversational LLM agent with external tools to guide the LLM in
its reasoning.

Another common limitation of LLMs is the tendency for hallucina-
tions, where the LLM outputs contradictions or non-sensical infor-
mation. This can be mitigated with clear and specific prompts as
well as with adjusting LLM parameters that control the randomness
of the output. The work of Fayyazi et al. [57] and of Pan et al. [53]
offer possible solutions with their domain-specific knowledge injec-
tions into the prompt or the fine-tuning stages. More studies could
be done in the area of prompt engineering, researching the LLM
prompts in an effort to produce the most accurate output. Prompts
can include zero or more examples, too, offering the model guides
to imitate with an effort to reduce hallucinations.

Detecting hallucinations is a manual process that can no longer
scale with the amount of context LLMs are producing. Models like
Gemini [12] and AnyGPT [72] are multi-modal, allowing for the
generation of text, audio, video, music, and more. As LLMs continue
to expand, these hallucinations need further consideration to ensure
safe, accurate, and unbiased content is being generated. One thought
would be to create LLMs that work in an adversarial way, where
one LLM generates content and the other validates it until there are
no more hallucinations.

In this literature review, we looked at papers surrounding various
LLM architectures from past years as well as recent work. To present
these papers, we first explained the history and fundamentals of
LLMs, followed by a deep dive into the development life cycle of a
LLM. We were then able to better present some well-known Trans-
former architectures, followed by very recent advances being made
in LLM architectures. Deployment strategies were discussed, fol-
lowed by the pros and cons of the various models. In reviewing
over ten LLMs in one paper, we were able to better understand
the differing architectures and nuances of each model as well as
the challenges faced. With this better understanding, we hope to
continue innovation in the field of LLMs.

, Vol. 1, No. 1, Article . Publication date: June 2025.

14 • Kathleen Kelly

8 ACKNOWLEDGMENTS
The author thanks Dr. Bo Wu for advice on the direction of this
literature review, resulting in a deep exploration and study of how
LLMs work and the challenges faced. She also thanks Dr. Christine
Liebe for advice on how to research a topic of interest, how to
read a paper, and how to write a literature review. She also thanks
fellow PhD students Ben Wagley and Xiangyu Li for their help in
clarifying some of the nuances in LLMs and for being a sounding
board.

REFERENCES
[1] [n. d.]. Introduction to Recurrent Neural Network. GeeksForGeeks ([n. d.]). https:

//www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
[2] [n. d.]. Large Language Models 101: History, Evolution and Future. scribble-

Data ([n. d.]). https://www.scribbledata.io/blog/large-language-models-history-
evolutions-and-future/

[3] [n. d.]. Llama 2 detailed explanation. Zhihu ([n. d.]). https://zhuanlan.zhihu.com/
p/649756898

[4] [n. d.]. The math behind Attention: Keys, Queries, and Values matrices. https:
//www.youtube.com/watch?v=UPtG_38Oq8o

[5] [n. d.]. What are loss functions in machine learning? https:
//video.search.yahoo.com/search/video?fr=mcafee&p=what+is+a+
loss+function+machine+learning&type=E210US91217G0#id=3&vid=
ff14c4ae56089bfc30b1097d6d2b7322&action=click

[6] [n. d.]. What is Layer Normalization? https://www.youtube.com/watch?v=
2V3Uduw1zwQ

[7] 2020. ELMo Embeddings. John Snow LABS (2020). https://sparknlp.org/
2020/01/31/elmo.html#:~:text=The%20complex%20architecture%20achieves%
20state%20of%20the%20art,word%20embedding%20modules%20that%20only%
20perform%20embedding%20lookups.

[8] 2023. Claude’s Constitution. https://www.anthropic.com/news/claudes-
constitution

[9] 2023. Data Preparation for Machine Learning: The Ultimate Guide to Doing
It Right. Pecan (2023). https://www.pecan.ai/blog/data-preparation-for-
machine-learning/#:~:text=You%20start%20with%20collecting%20data%20from%
20various%20sources,to%20make%20it%20compatible%20with%20machine%
20learning%20algorithms.

[10] 2023. How to Train a Machine Learning Model: The Complete Guide. ProjectPro
(2023). https://www.projectpro.io/article/training-a-machine-learning-model/
936

[11] 2023. Machine Learning Models: What THey Are and How to Build Them.
Coursera (2023). https://www.coursera.org/articles/machine-learning-models

[12] 2024. Gemini Pro vs GPT-4: An in-depth comparison of LLM models. Bind
AI (2024). https://blog.getbind.co/2024/01/07/google-gemini-pro-vs-gpt-4-llm-
models/

[13] 2024. Transfer Learning in Large Language Models: A Game Changer in AI.
Expand My Business (2024). https://blog.emb.global/transfer-learning-in-large-
language-models/

[14] Sherif Akoush. 2023. Deploying Large Language Models in Production: LLM
Deployment Challenges. Seldom (2023). https://www.seldon.io/deploying-large-
language-models-in-production-llm-deployment-challenges

[15] Sandi Besen. 2023. LLM Embeddings - Explained Simply. aimind (2023). https:
//pub.aimind.so/llm-embeddings-explained-simply-f7536d3d0e4b

[16] Viktor Bezdek. 2023. A Guide to Deploying Large Language Models (LLMs).
medium.com (2023). https://medium.com/@viktorbezdek/a-guide-to-deploying-
large-language-models-llms-8f172e211f02

[17] Bala Priya C. 2023. Build Better Deep Learning Models with Batch and Layer
Normalization. Pinecone (2023). https://www.pinecone.io/learn/batch-layer-
normalization/

[18] Matt Casey. 2023. Large languagemodels: their history, capabilities and limitations.
Snorkel (2023). https://snorkel.ai/large-language-models-llms/

[19] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
arXiv:1406.1078 [cs.CL]

[20] Paul Christiano. 2023. Large Language Model Training in 2023: A Practical Guide.
Expert Beacon (2023). https://expertbeacon.com/large-language-model-training/

[21] Rongqing Cong, Wenyang He, Mingxuan Li, Bangning Luo, Zebin Yang, Yuchao
Yang, Ru Huang, and Bonan Yan. 2024. AttentionLego: An Open-Source Building
Block For Spatially-Scalable Large Language Model Accelerator With Processing-
In-Memory Technology. arXiv:2401.11459 [cs.AR]

[22] Kiel Dang. 2023. Language Model History - Before and After Transformer: The
AI Revolution. medium.com (2023). https://medium.com/@kirudang/language-
model-history-before-and-after-transformer-the-ai-revolution-bedc7948a130

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

[24] Vyacheslav Efimov. 2024. Large LanguageModels, GPT-1 - Generative Pre-Trained
Transformer. Towards Data Science (2024). https://towardsdatascience.com/large-
language-models-gpt-1-generative-pre-trained-transformer-7b895f296d3b

[25] Josep Ferrer. 2024. An Introductory Guide to Fine-Tuning LLMs. datacamp (2024).
https://www.datacamp.com/tutorial/fine-tuning-large-language-models

[26] Keith D. Foote. 2023. A Brief History of Large Language Models. Dataversity
(2023). https://www.dataversity.net/a-brief-history-of-large-language-models/

[27] Olga Green. 2023. Understanding the GPT Architecture: A Deep
Dive into Generative Pre-trained Transformers. Stackademic (2023).
https://blog.stackademic.com/understanding-the-gpt-architecture-a-deep-
dive-into-generative-pre-trained-transformers-b4a9d2f3f5c0

[28] Abhishek Gupta. 2023. Transformers and Attention Mechanism: The Backbone
of LLMs. (2023). https://blog.acethecloud.com/transformers-and-attention-
mechanism-the-backbone-of-llms-blog-3-10-bfba00fcded6

[29] Minhajull Hoque. 2023. Demystifying Neural Network Normalization Techniques.
medium.com (2023). https://medium.com/@minh.hoque/demystifying-neural-
network-normalization-techniques-4a21d35b14f8

[30] Julian Horsey. 2023. Llama 1 vs Llama 2 AI architecture compared and tested.
Geeky Gadgets (2023). https://www.geeky-gadgets.com/llama-1-vs-llama-2/

[31] Julian Horsey. 2024. Pros Cons of Claude 3 AI compared to ChatGPT. Geeky
Gadgets (2024). https://www.geeky-gadgets.com/claude-3-vs-chatgpt/

[32] Michael Humor. 2023. Understanding “tokens” and tokenization in large lan-
guage models. (2023). https://blog.devgenius.io/understanding-tokens-and-
tokenization-in-large-language-models-1058cd24b944

[33] Gwyneth Iredale. 2021. Tokenization Algorithms in NLP. 101 Blockchains (2021).
https://101blockchains.com/tokenization-nlp/

[34] Alex Ivankov. 2023. Advantages and Disadvantages of Large Language Models.
Profolus (2023). https://www.profolus.com/topics/advantages-disadvantages-of-
large-language-models/

[35] Liva Jorge. 2023. GPT-3, BERT, and RoBERTa | AI Model Analysis Comparison.
medium.com (2023). https://medium.com/@livajorge7/gpt-3-bert-and-roberta-
ai-model-analysis-comparison-7dfab049367d

[36] Bhuvi Kathpalia. [n. d.]. Introduction to Large Language Models (LLMs). Leena
AI ([n. d.]). https://leena.ai/blog/large-language-models-llms-guide/

[37] Kashyap Kathrani. 2020. All about Embeddings. medium.com (2020). https:
//medium.com/@kashyapkathrani/all-about-embeddings-829c8ff0bf5b

[38] Ruhma Khawaja. 2023. Demystifying embeddings 101 - The foundation of large
language models. DataScienceDojo (2023). https://datasciencedojo.com/blog/
embeddings-and-llm/#

[39] Hal Koss. 2024. What Is Claude AI and How Does It Compare to ChatGPT?
built-in (2024). https://builtin.com/articles/claude-ai

[40] Simeon Kostadinov. 2017. Understanding GRU Networks. Towards Data Science
(2017).

[41] Minhyeok Lee. 2023. A Mathematical Investigation of Hallucination and Cre-
ativity in GPT Models. Mathematics 11 (05 2023), 2320. https://doi.org/10.3390/
math11102320

[42] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. arXiv:1910.13461 [cs.CL]

[43] Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang Chen, and Ming Cui. 2024.
From LLM to Conversational Agent: A Memory Enhanced Architecture with
Fine-Tuning of Large Language Models. arXiv:2401.02777 [cs.CL]

[44] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs.CL]

[45] Kun Luo, Zheng Liu, Shitao Xiao, and Kang Liu. 2024. BGE Landmark Embedding:
A Chunking-Free Embedding Method For Retrieval Augmented Long-Context
Large Language Models. arXiv:2402.11573 [cs.CL]

[46] Michael McDonough. 2024. large language model. Britannica (2024). https:
//www.britannica.com/topic/large-language-model#ref373414

[47] Akshit Mehra. 2023. Data Collection and Preprocessing for Large Language
Models. Labellerr (2023). https://www.labellerr.com/blog/data-collection-and-
preprocessing-for-large-language-models/

[48] Cristian Munoz. 2023. Overview of Large Language Models: From Transformer
Architecture to Prompt Engineering. Holistic AI (2023). https://www.holisticai.
com/blog/from-transformer-architecture-to-prompt-engineering

[49] Samarpit Nasa. 2023. Addressing Overfitting and Underfitting in LLM Training.
appypie (2023). https://www.appypie.com/blog/overfitting-and-underfitting-llm-
training

, Vol. 1, No. 1, Article . Publication date: June 2025.

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.scribbledata.io/blog/large-language-models-history-evolutions-and-future/
https://www.scribbledata.io/blog/large-language-models-history-evolutions-and-future/
https://zhuanlan.zhihu.com/p/649756898
https://zhuanlan.zhihu.com/p/649756898
https://www.youtube.com/watch?v=UPtG_38Oq8o
https://www.youtube.com/watch?v=UPtG_38Oq8o
https://video.search.yahoo.com/search/video?fr=mcafee&p=what+is+a+loss+function+machine+learning&type=E210US91217G0#id=3&vid=ff14c4ae56089bfc30b1097d6d2b7322&action=click
https://video.search.yahoo.com/search/video?fr=mcafee&p=what+is+a+loss+function+machine+learning&type=E210US91217G0#id=3&vid=ff14c4ae56089bfc30b1097d6d2b7322&action=click
https://video.search.yahoo.com/search/video?fr=mcafee&p=what+is+a+loss+function+machine+learning&type=E210US91217G0#id=3&vid=ff14c4ae56089bfc30b1097d6d2b7322&action=click
https://video.search.yahoo.com/search/video?fr=mcafee&p=what+is+a+loss+function+machine+learning&type=E210US91217G0#id=3&vid=ff14c4ae56089bfc30b1097d6d2b7322&action=click
https://www.youtube.com/watch?v=2V3Uduw1zwQ
https://www.youtube.com/watch?v=2V3Uduw1zwQ
https://sparknlp.org/2020/01/31/elmo.html#:~:text=The%20complex%20architecture%20achieves%20state%20of%20the%20art,word%20embedding%20modules%20that%20only%20perform%20embedding%20lookups.
https://sparknlp.org/2020/01/31/elmo.html#:~:text=The%20complex%20architecture%20achieves%20state%20of%20the%20art,word%20embedding%20modules%20that%20only%20perform%20embedding%20lookups.
https://sparknlp.org/2020/01/31/elmo.html#:~:text=The%20complex%20architecture%20achieves%20state%20of%20the%20art,word%20embedding%20modules%20that%20only%20perform%20embedding%20lookups.
https://sparknlp.org/2020/01/31/elmo.html#:~:text=The%20complex%20architecture%20achieves%20state%20of%20the%20art,word%20embedding%20modules%20that%20only%20perform%20embedding%20lookups.
https://www.anthropic.com/news/claudes-constitution
https://www.anthropic.com/news/claudes-constitution
https://www.pecan.ai/blog/data-preparation-for-machine-learning/#:~:text=You%20start%20with%20collecting%20data%20from%20various%20sources,to%20make%20it%20compatible%20with%20machine%20learning%20algorithms.
https://www.pecan.ai/blog/data-preparation-for-machine-learning/#:~:text=You%20start%20with%20collecting%20data%20from%20various%20sources,to%20make%20it%20compatible%20with%20machine%20learning%20algorithms.
https://www.pecan.ai/blog/data-preparation-for-machine-learning/#:~:text=You%20start%20with%20collecting%20data%20from%20various%20sources,to%20make%20it%20compatible%20with%20machine%20learning%20algorithms.
https://www.pecan.ai/blog/data-preparation-for-machine-learning/#:~:text=You%20start%20with%20collecting%20data%20from%20various%20sources,to%20make%20it%20compatible%20with%20machine%20learning%20algorithms.
https://www.projectpro.io/article/training-a-machine-learning-model/936
https://www.projectpro.io/article/training-a-machine-learning-model/936
https://www.coursera.org/articles/machine-learning-models
https://blog.getbind.co/2024/01/07/google-gemini-pro-vs-gpt-4-llm-models/
https://blog.getbind.co/2024/01/07/google-gemini-pro-vs-gpt-4-llm-models/
https://blog.emb.global/transfer-learning-in-large-language-models/
https://blog.emb.global/transfer-learning-in-large-language-models/
https://www.seldon.io/deploying-large-language-models-in-production-llm-deployment-challenges
https://www.seldon.io/deploying-large-language-models-in-production-llm-deployment-challenges
https://pub.aimind.so/llm-embeddings-explained-simply-f7536d3d0e4b
https://pub.aimind.so/llm-embeddings-explained-simply-f7536d3d0e4b
https://medium.com/@viktorbezdek/a-guide-to-deploying-large-language-models-llms-8f172e211f02
https://medium.com/@viktorbezdek/a-guide-to-deploying-large-language-models-llms-8f172e211f02
https://www.pinecone.io/learn/batch-layer-normalization/
https://www.pinecone.io/learn/batch-layer-normalization/
https://snorkel.ai/large-language-models-llms/
https://arxiv.org/abs/1406.1078
https://expertbeacon.com/large-language-model-training/
https://arxiv.org/abs/2401.11459
https://medium.com/@kirudang/language-model-history-before-and-after-transformer-the-ai-revolution-bedc7948a130
https://medium.com/@kirudang/language-model-history-before-and-after-transformer-the-ai-revolution-bedc7948a130
https://arxiv.org/abs/1810.04805
https://towardsdatascience.com/large-language-models-gpt-1-generative-pre-trained-transformer-7b895f296d3b
https://towardsdatascience.com/large-language-models-gpt-1-generative-pre-trained-transformer-7b895f296d3b
https://www.datacamp.com/tutorial/fine-tuning-large-language-models
https://www.dataversity.net/a-brief-history-of-large-language-models/
https://blog.stackademic.com/understanding-the-gpt-architecture-a-deep-dive-into-generative-pre-trained-transformers-b4a9d2f3f5c0
https://blog.stackademic.com/understanding-the-gpt-architecture-a-deep-dive-into-generative-pre-trained-transformers-b4a9d2f3f5c0
https://blog.acethecloud.com/transformers-and-attention-mechanism-the-backbone-of-llms-blog-3-10-bfba00fcded6
https://blog.acethecloud.com/transformers-and-attention-mechanism-the-backbone-of-llms-blog-3-10-bfba00fcded6
https://medium.com/@minh.hoque/demystifying-neural-network-normalization-techniques-4a21d35b14f8
https://medium.com/@minh.hoque/demystifying-neural-network-normalization-techniques-4a21d35b14f8
https://www.geeky-gadgets.com/llama-1-vs-llama-2/
https://www.geeky-gadgets.com/claude-3-vs-chatgpt/
https://blog.devgenius.io/understanding-tokens-and-tokenization-in-large-language-models-1058cd24b944
https://blog.devgenius.io/understanding-tokens-and-tokenization-in-large-language-models-1058cd24b944
https://101blockchains.com/tokenization-nlp/
https://www.profolus.com/topics/advantages-disadvantages-of-large-language-models/
https://www.profolus.com/topics/advantages-disadvantages-of-large-language-models/
https://medium.com/@livajorge7/gpt-3-bert-and-roberta-ai-model-analysis-comparison-7dfab049367d
https://medium.com/@livajorge7/gpt-3-bert-and-roberta-ai-model-analysis-comparison-7dfab049367d
https://leena.ai/blog/large-language-models-llms-guide/
https://medium.com/@kashyapkathrani/all-about-embeddings-829c8ff0bf5b
https://medium.com/@kashyapkathrani/all-about-embeddings-829c8ff0bf5b
https://datasciencedojo.com/blog/embeddings-and-llm/#
https://datasciencedojo.com/blog/embeddings-and-llm/#
https://builtin.com/articles/claude-ai
https://doi.org/10.3390/math11102320
https://doi.org/10.3390/math11102320
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2401.02777
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2402.11573
https://www.britannica.com/topic/large-language-model#ref373414
https://www.britannica.com/topic/large-language-model#ref373414
https://www.labellerr.com/blog/data-collection-and-preprocessing-for-large-language-models/
https://www.labellerr.com/blog/data-collection-and-preprocessing-for-large-language-models/
https://www.holisticai.com/blog/from-transformer-architecture-to-prompt-engineering
https://www.holisticai.com/blog/from-transformer-architecture-to-prompt-engineering
https://www.appypie.com/blog/overfitting-and-underfitting-llm-training
https://www.appypie.com/blog/overfitting-and-underfitting-llm-training

Large Language Model Architectures and Training Techniques: A Literature Review • 15

[50] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar,
Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. 2024. A
Comprehensive Overview of Large Language Models. arXiv:2307.06435 [cs.CL]

[51] Nomadev. 2023. Google’s Gemini: The Next Big Thing in AI Revolution. Nomadev
(2023). https://dev.to/thenomadevel/googles-gemini-the-next-big-thing-in-ai-
revolution-17a4

[52] Jean Nyandwi. 2023. The Transformer Blueprint: A Holistic Guide to the
Transformer Neural Network Architecture. AI Research Blog (2023). https:
//deeprevision.github.io/posts/001-transformer/

[53] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu.
2024. Unifying Large Language Models and Knowledge Graphs: A Roadmap. IEEE
Transactions on Knowledge and Data Engineering (2024), 1–20. https://doi.org/10.
1109/TKDE.2024.3352100

[54] Harika Panuganty. 2023. From Words to VEctors: Inside the LLM Transformer
Architecture. medium.com (2023). https://medium.com/@harikapanuganty/from-
words-to-vectors-inside-the-llm-transformer-architecture-50275c354bc4

[55] Yeonhong Park, Jake Hyun, SangLyul Cho, Bonggeun Sim, and Jae W. Lee. 2024.
Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs.
arXiv:2402.10517 [cs.LG]

[56] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy
Lillicrap, Jean baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat,
Julian Schrittwieser, Ioannis Antonoglou, Rohan Anil, Sebastian Borgeaud, An-
drew Dai, Katie Millican, Ethan Dyer, Mia Glaese, Thibault Sottiaux, Benjamin
Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, James Molloy, Jilin Chen,
Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin Johnson, Johan
Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Za-
heer Abbas, Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel
Lenc, Salem Haykal, Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery,
Roman Ring, Stephen Spencer, Eren Sezener, Luke Vilnis, Oscar Chang, Nobuyuki
Morioka, George Tucker, Ce Zheng, Oliver Woodman, Nithya Attaluri, Tomas
Kocisky, Evgenii Eltyshev, Xi Chen, Timothy Chung, Vittorio Selo, Siddhartha
Brahma, Petko Georgiev, Ambrose Slone, Zhenkai Zhu, James Lottes, Siyuan
Qiao, Ben Caine, Sebastian Riedel, Alex Tomala, Martin Chadwick, Juliette Love,
Peter Choy, Sid Mittal, Neil Houlsby, Yunhao Tang, Matthew Lamm, Libin Bai,
Qiao Zhang, Luheng He, Yong Cheng, Peter Humphreys, Yujia Li, Sergey Brin,
Albin Cassirer, Yingjie Miao, Lukas Zilka, Taylor Tobin, Kelvin Xu, Lev Proleev,
Daniel Sohn, Alberto Magni, Lisa Anne Hendricks, Isabel Gao, Santiago Ontañón,
Oskar Bunyan, Nathan Byrd, Abhanshu Sharma, Biao Zhang, Mario Pinto, Rishika
Sinha, Harsh Mehta, Dawei Jia, Sergi Caelles, Albert Webson, Alex Morris, Becca
Roelofs, Yifan Ding, Robin Strudel, Xuehan Xiong, Marvin Ritter, Mostafa De-
hghani, Rahma Chaabouni, Abhijit Karmarkar, Guangda Lai, Fabian Mentzer, Bibo
Xu, YaGuang Li, Yujing Zhang, Tom Le Paine, Alex Goldin, Behnam Neyshabur,
Kate Baumli, Anselm Levskaya, Michael Laskin, Wenhao Jia, Jack W. Rae, Kefan
Xiao, Antoine He, Skye Giordano, Lakshman Yagati, Jean-Baptiste Lespiau, Paul
Natsev, Sanjay Ganapathy, Fangyu Liu, Danilo Martins, Nanxin Chen, Yunhan Xu,
Megan Barnes, Rhys May, Arpi Vezer, Junhyuk Oh, Ken Franko, Sophie Bridgers,
Ruizhe Zhao, Boxi Wu, Basil Mustafa, Sean Sechrist, Emilio Parisotto, Thanu-
malayan Sankaranarayana Pillai, Chris Larkin, Chenjie Gu, Christina Sorokin,
MaximKrikun, AlexeyGuseynov, Jessica Landon, RominaDatta, Alexander Pritzel,
Phoebe Thacker, Fan Yang, Kevin Hui, Anja Hauth, Chih-Kuan Yeh, David Barker,
Justin Mao-Jones, Sophia Austin, Hannah Sheahan, Parker Schuh, James Svensson,
Rohan Jain, Vinay Ramasesh, Anton Briukhov, Da-Woon Chung, Tamara von
Glehn, Christina Butterfield, Priya Jhakra, Matthew Wiethoff, Justin Frye, Jordan
Grimstad, Beer Changpinyo, Charline Le Lan, Anna Bortsova, Yonghui Wu, Paul
Voigtlaender, Tara Sainath, Charlotte Smith, Will Hawkins, Kris Cao, James Besley,
Srivatsan Srinivasan, Mark Omernick, Colin Gaffney, Gabriela Surita, Ryan Bur-
nell, Bogdan Damoc, Junwhan Ahn, Andrew Brock, Mantas Pajarskas, Anastasia
Petrushkina, Seb Noury, Lorenzo Blanco, Kevin Swersky, Arun Ahuja, Thi Avra-
hami, Vedant Misra, Raoul de Liedekerke, Mariko Iinuma, Alex Polozov, Sarah
York, George van den Driessche, Paul Michel, Justin Chiu, Rory Blevins, Zach
Gleicher, Adrià Recasens, Alban Rrustemi, Elena Gribovskaya, Aurko Roy, Wiktor
Gworek, Séb Arnold, Lisa Lee, James Lee-Thorp, Marcello Maggioni, Enrique
Piqueras, Kartikeya Badola, Sharad Vikram, Lucas Gonzalez, Anirudh Baddepudi,
Evan Senter, Jacob Devlin, James Qin, Michael Azzam, Maja Trebacz, Martin
Polacek, Kashyap Krishnakumar, Shuo yiin Chang, Matthew Tung, Ivo Penchev,
Rishabh Joshi, Kate Olszewska, Carrie Muir, Mateo Wirth, Ale Jakse Hartman,
Josh Newlan, Sheleem Kashem, Vijay Bolina, Elahe Dabir, Joost van Amersfoort,
Zafarali Ahmed, James Cobon-Kerr, Aishwarya Kamath, Arnar Mar Hrafnkelsson,
Le Hou, Ian Mackinnon, Alexandre Frechette, Eric Noland, Xiance Si, Emanuel
Taropa, Dong Li, Phil Crone, Anmol Gulati, Sébastien Cevey, Jonas Adler, Ada
Ma, David Silver, Simon Tokumine, Richard Powell, Stephan Lee, Michael Chang,
Samer Hassan, Diana Mincu, Antoine Yang, Nir Levine, Jenny Brennan, Mingqiu
Wang, Sarah Hodkinson, Jeffrey Zhao, Josh Lipschultz, Aedan Pope, Michael B.
Chang, Cheng Li, Laurent El Shafey, Michela Paganini, Sholto Douglas, Bernd
Bohnet, Fabio Pardo, Seth Odoom, Mihaela Rosca, Cicero Nogueira dos Santos,

Kedar Soparkar, Arthur Guez, Tom Hudson, Steven Hansen, Chulayuth Asawaro-
engchai, Ravi Addanki, Tianhe Yu, Wojciech Stokowiec, Mina Khan, Justin Gilmer,
Jaehoon Lee, Carrie Grimes Bostock, Keran Rong, Jonathan Caton, Pedram Pej-
man, Filip Pavetic, Geoff Brown, Vivek Sharma, Mario Lučić, Rajkumar Samuel,
Josip Djolonga, Amol Mandhane, Lars Lowe Sjösund, Elena Buchatskaya, Elspeth
White, Natalie Clay, Jiepu Jiang, Hyeontaek Lim, Ross Hemsley, Jane Labanowski,
Nicola De Cao, David Steiner, Sayed Hadi Hashemi, Jacob Austin, Anita Gergely,
Tim Blyth, Joe Stanton, Kaushik Shivakumar, Aditya Siddhant, Anders Andreassen,
Carlos Araya, Nikhil Sethi, Rakesh Shivanna, Steven Hand, Ankur Bapna, Ali Kho-
daei, Antoine Miech, Garrett Tanzer, Andy Swing, Shantanu Thakoor, Zhufeng
Pan, Zachary Nado, Stephanie Winkler, Dian Yu, Mohammad Saleh, Loren Mag-
giore, Iain Barr, Minh Giang, Thais Kagohara, Ivo Danihelka, Amit Marathe,
Vladimir Feinberg, Mohamed Elhawaty, Nimesh Ghelani, Dan Horgan, Helen
Miller, Lexi Walker, Richard Tanburn, Mukarram Tariq, Disha Shrivastava, Fei
Xia, Chung-Cheng Chiu, Zoe Ashwood, Khuslen Baatarsukh, Sina Samangooei,
Fred Alcober, Axel Stjerngren, Paul Komarek, Katerina Tsihlas, Anudhyan Boral,
Ramona Comanescu, Jeremy Chen, Ruibo Liu, Dawn Bloxwich, Charlie Chen,
Yanhua Sun, Fangxiaoyu Feng, Matthew Mauger, Xerxes Dotiwalla, Vincent Hel-
lendoorn, Michael Sharman, Ivy Zheng, Krishna Haridasan, Gabe Barth-Maron,
Craig Swanson, Dominika Rogozińska, Alek Andreev, Paul Kishan Rubenstein,
Ruoxin Sang, Dan Hurt, Gamaleldin Elsayed, Renshen Wang, Dave Lacey, Anas-
tasija Ilić, Yao Zhao, Lora Aroyo, Chimezie Iwuanyanwu, Vitaly Nikolaev, Balaji
Lakshminarayanan, Sadegh Jazayeri, Raphaël Lopez Kaufman, Mani Varadarajan,
Chetan Tekur, Doug Fritz, Misha Khalman, David Reitter, Kingshuk Dasgupta,
Shourya Sarcar, Tina Ornduff, Javier Snaider, Fantine Huot, Johnson Jia, Rupert
Kemp, Nejc Trdin, Anitha Vijayakumar, Lucy Kim, Christof Angermueller, Li
Lao, Tianqi Liu, Haibin Zhang, David Engel, Somer Greene, Anaïs White, Jes-
sica Austin, Lilly Taylor, Shereen Ashraf, Dangyi Liu, Maria Georgaki, Irene Cai,
Yana Kulizhskaya, Sonam Goenka, Brennan Saeta, Kiran Vodrahalli, Christian
Frank, Dario de Cesare, Brona Robenek, Harry Richardson, Mahmoud Alnahlawi,
Christopher Yew, Priya Ponnapalli, Marco Tagliasacchi, Alex Korchemniy, Yelin
Kim, Dinghua Li, Bill Rosgen, Zoe Ashwood, Kyle Levin, JeremyWiesner, Praseem
Banzal, Praveen Srinivasan, Hongkun Yu, Çağlar Ünlü, David Reid, Zora Tung,
Daniel Finchelstein, Ravin Kumar, Andre Elisseeff, Jin Huang, Ming Zhang, Rui
Zhu, Ricardo Aguilar, Mai Giménez, Jiawei Xia, Olivier Dousse, Willi Gierke,
Soheil Hassas Yeganeh, Damion Yates, Komal Jalan, Lu Li, Eri Latorre-Chimoto,
Duc Dung Nguyen, Ken Durden, Praveen Kallakuri, Yaxin Liu, Matthew Johnson,
Tomy Tsai, Alice Talbert, Jasmine Liu, Alexander Neitz, Chen Elkind, Marco Selvi,
Mimi Jasarevic, Livio Baldini Soares, Albert Cui, Pidong Wang, Alek Wenjiao
Wang, Xinyu Ye, Krystal Kallarackal, Lucia Loher, Hoi Lam, Josef Broder, Dan
Holtmann-Rice, Nina Martin, Bramandia Ramadhana, Daniel Toyama, Mrinal
Shukla, Sujoy Basu, Abhi Mohan, Nick Fernando, Noah Fiedel, Kim Paterson, Hui
Li, Ankush Garg, Jane Park, DongHyun Choi, Diane Wu, Sankalp Singh, Zhishuai
Zhang, Amir Globerson, Lily Yu, John Carpenter, Félix de Chaumont Quitry, Carey
Radebaugh, Chu-Cheng Lin, Alex Tudor, Prakash Shroff, Drew Garmon, Dayou
Du, Neera Vats, Han Lu, Shariq Iqbal, Alex Yakubovich, Nilesh Tripuraneni, James
Manyika, Haroon Qureshi, Nan Hua, Christel Ngani, Maria Abi Raad, Hannah
Forbes, Anna Bulanova, Jeff Stanway, Mukund Sundararajan, Victor Ungureanu,
Colton Bishop, Yunjie Li, Balaji Venkatraman, Bo Li, Chloe Thornton, Salvatore
Scellato, Nishesh Gupta, Yicheng Wang, Ian Tenney, Xihui Wu, Ashish Shenoy,
Gabriel Carvajal, Diana Gage Wright, Ben Bariach, Zhuyun Xiao, Peter Hawkins,
Sid Dalmia, Clement Farabet, Pedro Valenzuela, Quan Yuan, Chris Welty, Ananth
Agarwal, Mia Chen, Wooyeol Kim, Brice Hulse, Nandita Dukkipati, Adam Paszke,
Andrew Bolt, Elnaz Davoodi, Kiam Choo, Jennifer Beattie, Jennifer Prendki, Har-
sha Vashisht, Rebeca Santamaria-Fernandez, Luis C. Cobo, JarekWilkiewicz, David
Madras, Ali Elqursh, Grant Uy, Kevin Ramirez, Matt Harvey, Tyler Liechty, Heiga
Zen, Jeff Seibert, Clara Huiyi Hu, Mohamed Elhawaty, Andrey Khorlin, Maigo Le,
Asaf Aharoni, Megan Li, Lily Wang, Sandeep Kumar, Alejandro Lince, Norman
Casagrande, Jay Hoover, Dalia El Badawy, David Soergel, Denis Vnukov, Matt
Miecnikowski, Jiri Simsa, Anna Koop, Praveen Kumar, Thibault Sellam, Daniel Vla-
sic, Samira Daruki, Nir Shabat, John Zhang, Guolong Su, Jiageng Zhang, Jeremiah
Liu, Yi Sun, Evan Palmer, Alireza Ghaffarkhah, Xi Xiong, Victor Cotruta, Michael
Fink, Lucas Dixon, Ashwin Sreevatsa, Adrian Goedeckemeyer, Alek Dimitriev,
Mohsen Jafari, Remi Crocker, Nicholas FitzGerald, Aviral Kumar, Sanjay Ghe-
mawat, Ivan Philips, Frederick Liu, Yannie Liang, Rachel Sterneck, Alena Repina,
Marcus Wu, Laura Knight, Marin Georgiev, Hyo Lee, Harry Askham, Abhishek
Chakladar, Annie Louis, Carl Crous, Hardie Cate, Dessie Petrova, Michael Quinn,
Denese Owusu-Afriyie, Achintya Singhal, Nan Wei, Solomon Kim, Damien Vin-
cent, Milad Nasr, Christopher A. Choquette-Choo, Reiko Tojo, Shawn Lu, Diego
de Las Casas, Yuchung Cheng, Tolga Bolukbasi, Katherine Lee, Saaber Fatehi,
Rajagopal Ananthanarayanan, Miteyan Patel, Charbel Kaed, Jing Li, Jakub Syg-
nowski, Shreyas Rammohan Belle, Zhe Chen, Jaclyn Konzelmann, Siim Põder,
Roopal Garg, Vinod Koverkathu, Adam Brown, Chris Dyer, Rosanne Liu, Azade
Nova, Jun Xu, Slav Petrov, Demis Hassabis, Koray Kavukcuoglu, Jeffrey Dean,
and Oriol Vinyals. 2024. Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context. arXiv:2403.05530 [cs.CL]

, Vol. 1, No. 1, Article . Publication date: June 2025.

https://arxiv.org/abs/2307.06435
https://dev.to/thenomadevel/googles-gemini-the-next-big-thing-in-ai-revolution-17a4
https://dev.to/thenomadevel/googles-gemini-the-next-big-thing-in-ai-revolution-17a4
https://deeprevision.github.io/posts/001-transformer/
https://deeprevision.github.io/posts/001-transformer/
https://doi.org/10.1109/TKDE.2024.3352100
https://doi.org/10.1109/TKDE.2024.3352100
https://medium.com/@harikapanuganty/from-words-to-vectors-inside-the-llm-transformer-architecture-50275c354bc4
https://medium.com/@harikapanuganty/from-words-to-vectors-inside-the-llm-transformer-architecture-50275c354bc4
https://arxiv.org/abs/2402.10517
https://arxiv.org/abs/2403.05530

16 • Kathleen Kelly

[57] Shanchieh Jay Yang Reza Fayyazi, Rozhina Taghdimi. 2024. Advancing TTP
Analysis: Harnessing the Power of Encoder-Only and Decoder-Only Language
Models with Retrieval Augmented Generation. arXiv:2401.00280v2

[58] Arjun Sarkar. 2022. All you need to know about ‘Attention’ and ‘Trans-
formers’ — In-depth Understanding — Part 1. Towards Data Science
(2022). https://towardsdatascience.com/all-you-need-to-know-about-attention-
and-transformers-in-depth-understanding-part-1-552f0b41d021

[59] Saumya. 2024. Training Large Language Models: Delving Deep into Method-
ologies, Challenges, and Best Practices for Training LLMs. appypie (2024).
https://www.appypie.com/blog/large-language-models-training

[60] Jessica Schulze. 2024. What is GPT? GPT-3, GPT-4, and More Explained. Coursera
(2024). https://www.coursera.org/articles/what-is-gpt

[61] Natassha Selvaraj. 2022. 8 Machine Learning Models Explained in 20 Minutes.
DataCamp (2022). https://www.datacamp.com/blog/machine-learning-models-
explained

[62] Deval Shah. 2024. The Ultimate Guide to Deploying Large LanguageModels Safely
and Securely. Lakera (2024). https://www.lakera.ai/blog/how-to-deploy-an-llm

[63] Karthik Shiraly. 2023. BART Text Summarization vs. GPT-3 vs. BERT: An In-Depth
Comparison. width.ai (2023). https://www.width.ai/post/bart-text-summarization

[64] Neeraj Shukla. 2024. Architecture and Components of Large Language Models.
appypie (2024). https://www.appypie.com/blog/architecture-and-components-
of-llms

[65] Xuchen Suo. 2024. Signed-Prompt: A New Approach to Prevent Prompt Injection
Attacks Against LLM-Integrated Applications. ArXiv abs/2401.07612 (2024). https:
//api.semanticscholar.org/CorpusID:266999840

[66] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

[68] Priyanka Vergadia. 2024. LLM Parameters Explained. The Cloud Girl
(2024). https://www.thecloudgirl.dev/blog/llm-parameters-explained#:~:
text=Conclusion%3A%20Parameter%20count%20in%20an%20LLM%20is%20like,
for%20training%20and%20use%2C%20making%20them%20less%20accessible.

[69] Georgia Weston. 2023. What is Large Language Model (LLM)? 101 Blockchains
(2023). https://101blockchains.com/large-language-model-llm/

[70] Chen Yanhui. 2021. A Battle Against Amnesia: A Brief History and
Introduction of Recurrent Neural Networks. Towards Data Science
(2021). https://towardsdatascience.com/a-battle-against-amnesia-a-brief-
history-and-introduction-of-recurrent-neural-networks-50496aae6740

[71] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv:2210.03629 [cs.CL]

[72] Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin
Zhang, Ruibin Yuan, Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui, Tianxiang
Sun, Yugang Jiang, and Xipeng Qiu. 2024. AnyGPT: Unified Multimodal LLM
with Discrete Sequence Modeling. arXiv:2402.12226 [cs.CL]

[73] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. 2024. TinyLlama:
An Open-Source Small Language Model. arXiv:2401.02385 [cs.CL]

, Vol. 1, No. 1, Article . Publication date: June 2025.

https://arxiv.org/abs/2401.00280v2
https://towardsdatascience.com/all-you-need-to-know-about-attention-and-transformers-in-depth-understanding-part-1-552f0b41d021
https://towardsdatascience.com/all-you-need-to-know-about-attention-and-transformers-in-depth-understanding-part-1-552f0b41d021
https://www.appypie.com/blog/large-language-models-training
https://www.coursera.org/articles/what-is-gpt
https://www.datacamp.com/blog/machine-learning-models-explained
https://www.datacamp.com/blog/machine-learning-models-explained
https://www.lakera.ai/blog/how-to-deploy-an-llm
https://www.width.ai/post/bart-text-summarization
https://www.appypie.com/blog/architecture-and-components-of-llms
https://www.appypie.com/blog/architecture-and-components-of-llms
https://api.semanticscholar.org/CorpusID:266999840
https://api.semanticscholar.org/CorpusID:266999840
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://www.thecloudgirl.dev/blog/llm-parameters-explained#:~:text=Conclusion%3A%20Parameter%20count%20in%20an%20LLM%20is%20like,for%20training%20and%20use%2C%20making%20them%20less%20accessible.
https://www.thecloudgirl.dev/blog/llm-parameters-explained#:~:text=Conclusion%3A%20Parameter%20count%20in%20an%20LLM%20is%20like,for%20training%20and%20use%2C%20making%20them%20less%20accessible.
https://www.thecloudgirl.dev/blog/llm-parameters-explained#:~:text=Conclusion%3A%20Parameter%20count%20in%20an%20LLM%20is%20like,for%20training%20and%20use%2C%20making%20them%20less%20accessible.
https://101blockchains.com/large-language-model-llm/
https://towardsdatascience.com/a-battle-against-amnesia-a-brief-history-and-introduction-of-recurrent-neural-networks-50496aae6740
https://towardsdatascience.com/a-battle-against-amnesia-a-brief-history-and-introduction-of-recurrent-neural-networks-50496aae6740
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2402.12226
https://arxiv.org/abs/2401.02385

	Abstract
	1 Introduction
	2 History and Fundamentals
	2.1 History of LLMs
	2.2 Fundamentals of LLMs

	3 Development Life Cycle
	3.1 Data collection and preprocessing
	3.2 Data embedding
	3.3 Data normalization
	3.4 Attention
	3.5 Feed-Forward
	3.6 Pre-training
	3.7 Fine-tuning
	3.8 Transfer learning

	4 Architectures
	4.1 History
	4.2 Transformers
	4.3 Recent advances

	5 Deployment
	6 Use Cases and Challenges
	6.1 RNN
	6.2 Transformer

	7 Discussion and Future Work
	8 Acknowledgments
	References

